8^2+16^2=b^2

Simple and best practice solution for 8^2+16^2=b^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8^2+16^2=b^2 equation:



8^2+16^2=b^2
We move all terms to the left:
8^2+16^2-(b^2)=0
We add all the numbers together, and all the variables
-1b^2+320=0
a = -1; b = 0; c = +320;
Δ = b2-4ac
Δ = 02-4·(-1)·320
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*-1}=\frac{0-16\sqrt{5}}{-2} =-\frac{16\sqrt{5}}{-2} =-\frac{8\sqrt{5}}{-1} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*-1}=\frac{0+16\sqrt{5}}{-2} =\frac{16\sqrt{5}}{-2} =\frac{8\sqrt{5}}{-1} $

See similar equations:

| 2b+(2b-8)=28 | | 4(4-4k)=-10+16k | | 1/2x+x=126 | | 9d-1/3(6-9d)=70 | | -x=125 | | 3x-9x=56 | | 1.5x=6.25=1.25x | | w=13=71 | | 10b-4+3b+2=6b-5b | | 60=12(6m-3)+12(10m+8) | | 6(5+8x)=-366 | | 2(11x+9)2(4x+5)=298 | | d/6+5=11 | | 7(x+2=-49 | | -31=-7u–10 | | 50=5(12+s) | | -13h=-19h−6 | | 21a-63=4 | | 4(5x-3)=10x+2 | | 2=b3+3 | | 51^2+60^2=c^2 | | 5=9+w/3 | | 13x+2=9x+42 | | f+14/26=-8 | | 1.04(1.24)(8-x)=10 | | 4(3x-15)=12(x-50 | | 5^2+12^2=c^ | | X^2+10x=-9+10x | | 20x-12=36 | | 2,5(3x-9)-3(0.5x+4,5)=0 | | -202-x=8x+122 | | 5x^2+-23=-5 |

Equations solver categories